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It is well known that the splitting streamline at a stagnation point on a 
wall In an lnvlscld rotational flow makes a finite angle with the normal to 
the wall. Itis abo well known that the stagnation streamline coming into a 
general stagnation point on a wall Is normal to the waI1 in an lrrotatlonal 
flow, The purpose of this communication Is to answer the question of what 
Is the corresponding result with rotational flow and a general stagnation 
point. 

We consider the flow to be steady and of constant density, on one side of 

a plane wall. An assumed form for the velocity field Is chosen in which the 

vortlclty component normal to the wall Is zero. Since the vortlcity compo- 

nent normal to a body In lnvlscld constant-density flow Is generally zero 

there, this choice is not restrictive In Investigating local behavior. The 

wall Is the plane z = lj in the Cartesian space (ax, ay, UE). The flow 

occupies the space z > 0. The quantity a Is an arbitrarily chosen refe- 

rence length. The normal flow appraachlng the wall Is characterized by the 

reference velocity gradient V'. 

The velocity Is assumed to have the form 

q = ‘/,V’a[F + s(H” - a), G + y(H’ -I- a), - 2Hl (1) 

where F, 0, x and a are functions of z alone, and primes denote differ- 

entiation with respect to z (except In Y', of course). The vortlclty cor- 

responding to (1) Is expressed 

D x q = ‘/$“r- G’ - y(H” + a’), F’ + z(H” - a’), 01 (2) 

Our method Is to express the pressure gradient through the momentum equa- 
tion, and then Impose the condition that the curl of the pressure gradient 

be zero. We obtain the following equations 

Ha’ - H’a = - a,, HH” - 1/2(H’2 + a”) = - V2(1 + u,2) (3) 

l ) Presented at the Second All-Union Congress of Theoretical and Applied 
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HF’ - ‘/#I -a)F = M = 0, HG' - ‘12(H +a)G = N = 0 (4) 

with the right-hand sides of the equations Initially arbitrary constants. 

The first two are evaluated through the boundary conditions 

H(0) = 0 H'(0) = 1, a(O) =a0 (5) 

which we impose. The parameter a0 Is basic In our Investigation. With 

exceptions, the other two constants N and N can be set equal to zero by 

the following argument. Provided a0 # 1 , if N Is nonzero, a translation 

of the coordinate system in the r-direction can be found which makes N zero. 

We p-esume that such a translation has been made If necessary. Similarly, 

provided h#-1,wecanset X=0. In addition, Inasmuch as we may lnter- 

change x and y without changing the form of the solution, we may restrict 

or, to nonnegative values without loss of generality. 

Equations (3), with boundary conditions (5), are Independent of equations 

(4). Since the right-hand sides of (3) were determined using (5), two addl- 

tlonal boundary conditions are needed to determine the solution. This system 

and Its solution will be termed primary. 

With the primary solution known, Equations (4) for F and c are linear. 

We impose the boundary conditions 

F(0) = 0, G(0) = 0 (6) 
here. This system and Its solution will be termed secondary. The pressure 

distribution corresponding to a solution of these systems of equations Is 

P = Pat - ‘~~P~2~2(‘~,(~ - a&*~* + V4(1 -i- ao)*ye - Mx - Ny + H*) (7) 
. 

We turn now to the details of that solutions. It Is convenient to consider 

various possible cases separately. 

Axlsymmetrlc case ~'0. The general primary solution 

IS given by 

2' = h-H, H = k’sindz + HO”k-*(codc~ - 1) (8) 
where k = c'(O) . It IS analytic. The general secondary solution Is 

F = f. ‘r/B exp (- 1l&z), G = go VFexp (l/&z) (9) 

where f0 and go are arbitrary constants. Thus the secondary velocity 

behaves as I h near the wall, and the vortlclty'as 2 -*. The stagnation 

streamline near the stagnation point has the shape described by 

22 Y 3’h 
-_--r_---_ 
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go 2 (10) 

Nodal case O<a,Cl. In this case the primary streamlines 

on the wall form a nodal pattern. The only analytic primary solution Is the 

special one H = a , a = a,, . The general primary solution has the form 
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H’ = 1 + hozl-ao + hp% + 0 (@-ad) (11) 
a = a0 - hozl-% + hlzl+% +- 0 ($(I-4) 

where & and h, are arbitrary constants. The corresponding secondary solu- 
tion has the form 

F = f,,z’h(l-a.) [i + o (zb-q], G = goz’Ml+%) [1 + 0 (&-a.))] (12) 

The stagnation streamline near the stagnation point is described by 

2 ,%(I-4 
-_A - 

2(1-aa)’ 10 

This result reduces to (10) If a0 is set equal to zero. 

Planar Cas e cb=l. In this special case we 

a = ii’. We obtain for the primary solution 

H= k-l dnb kz, a = H’ = cutakz 

(13) 

require that 

(14) 

where k is arbitrary. In this case M cannot be set equal to zero in 

general. The secondary solution Is 

F = ikfh~~~~~,+ fo, (15) 

G = g,H (16) 

Unless both H and f0 are zcrb no stagnation point can exist. Provided 

jf=O and f,,‘O, the stagnation streamlines near the stagnation points 

are described by 

2 = const, Y= 1/*&z (17) 

Here the streamlines come in to the wall at a finite angle. 

Almost-planar case co=1 . In this case we exclude 

the possibility that 0 = H’ . A new variable 5 is defined by 

z,e-4 (18) 
where zO is an arbitrary constant. The primary solution has the form 

H = z + zE-’ (1 + 0 (%--I In %)) 

‘lz (H’ - a) = %-I (1 + 0 (E-1 In %)) (19) 

l/t (H’ + a) = 1 + l/,k2z2E2 (1 + o (E-l In E)) 

where k Is an arbitrkry ConStSIIt. 

!l'he secondary solution has the form 

F=- V2 ME (1 + 0 (f-l 1x3 E)) + ‘/JO W’ - 4 

G = go 2% (1 i- 0 (E-l In %)) 

(20) 
(21) 
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As In the planar case, M must be equal to zero In order that a StagIW 

tlon point may exist. This means there can be no pressure gradient along the 

x-axis. If y,, # 0 a translation of the origin in the x direction can be 

found which will make I,, = 0 . Thus we may set f0 = 0 without loss of 

generality. 

If N = 0 and y0 =0, a stagnation streamline enters the origin, with 

1~s shape described by x = 0 and 

Y= - 1/aw (E + l/2) (22) 

In this case, as In the planar case, not only Is the origin a stagnation 

point but also all points along the x-axis. However, these other stagnation 

points have the somewhat unusual property that there exists no stagnation 

streamline entering any of them. 

Saddle-point ca3e aO>l. In this case the primary 

streamlines on the wall form a saddle-point pattern. The primary solution 

(11) of the nodal case applies here except that we must set & = 0 . 

We obtain 
H’- 1 = a - a, = hlZl+Q. + 0 (Za(l+%)) 

with only one arbitrary ccnstant. The secondary solution has the form 

F = f&(1-Q [I + o ($+a,)], G = g&r(l+‘zo) [1 + 0 (,I+..)] (24) 
In this case It Is necessary that f0 = 0 ln order that a stagnation 

point may exist. If Ycl = 0 the stagnation streamline Is described by X= 0 

and the second equation of (13). 

In summary, stagnation points of aslsymmetrlc and nodal types (with 

0 < a,< 1) can exist In quite great generality. A small perturbation In the 

pressure field or Incoming vortlclty distribution will only slightly perturb 

the stagnation point location and low field. Stagnation points of the types 

with a0 > 1 can exist only under special conditions. A perturbation of the 

pressure field making M nonzero will destroy the stagnation point In the 

cases a0 = 1 , as will a small superposed uniform velocity In the x dlrec- 

tlon In the planar case. In the saddle-point case, any Incoming vortlcity 

with nonzero y component will destroy the stagnation point. 

In the saddle-point case (with /,, = 0) and with a,< 1 If fO= 0 and 

00'0 3 the stagnation streamline comes In to the stagnation point normal to 

the wall. In the planar case with gO# 0 It comes in at a finite angle. 

In all the other cases considered the stagnation streamline comes In to the 

stagnation point tangent to the wall. This may be considered to be the sltu- 

atlon In general In lnvlscld rotational flow. 


