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It is well known that the splitting streamline at a stagnation point on a
wall in an 1lnviscld rotational flow makes a finlte angle with the normal to
the wall. Itis also well known that the stagnation streamline coming into a
general stagnatlion polnt on a wall is normal to the wall in an irrotational
flow, The purpose of this communication is to answer the question of what
1s the corresponding result with rotational flow and & general stagnation
point.

We consider the flow to be steady and of constant density, on one side of
2 plane wall. An assumed form for the velocity fileld is chosen in which the
vorticity component normal to the wall is zero. Since the vorticity compo-
nent normal to a body in inviscid constant-density flow 1s generally zero
there, this choice is not restrictive in investigating local behavior, The
wall 1s the plane z = ( 1in the cartesian space (gx, ay, az). The flow
occuples the space z > 0. The quantity a 1s an arbitrarily chosen refe-
rence length. The normal flow appraaching the wall is characterized by the

reference velocity gradlent V',

The velocity 1s assumed to have the form
q=YValF + z(H —a), G + y(H +a), — 2H] (1)
where F, ¢, # and o are functions of =z alone, and primes denote differ-
entiation with respect to 2z (except in Vy’, of course). The vorticity cor-
responding to (1) is expressed
UXq=YV[— 6 —yH + ). F + z(H — «),0] (2)

Our method 1s to express the pressure gradient through the momentum equa-
tion, and then impose the condition that the curl of the pressure gradlent
be zero. We obtaln the following equatilons

Ho' — H'a = — o, HH” — Yy(H"® + o) = — Yy(1 + ag®) @)

*) Presented at the Second All-Union Congress of Theoretical and Applied
Mechanics, Moscow, February 1964.
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lnviscid rotational stagnation point flow 841

HF —YH' ~q)F =M =0, HE —YyH' +a)6=N =0 ()

wlth the right-hand sldes of the equations initially arbitrary constants.
The first two are evaluated through the boundary conditions

H(O) =0 H’(O) = 17 (1(0) =09 (5)

which we 1impose. The parameter a, 1s baslc in our investigation. With
exceptions, the other two constants ¥ and ¥ can be set equal to zero by
the following argument. Provided a, # 1 , 1If ¥ 1s nonzero, a translation
of the coordinate system in the x-direction can be found which makes ¥ zero.
We presume thas such a translation has been made if necessary. Similarly,
provided q,#-—1, we can set ¥ = 0 ., In addition, inasmuch as we may inter-
change x and y without changing the form of the solution, we may restrict
ao to nonnegative values without loss of generality.

Equations (3), with boundary conditions (5), are independent of equations
(4). Since the right-hand sides of (3) were determined using (5), two addi-
tional boundary conditlons are needed to determine the solution. This system
and 1ts solution will be termed primary.

With the primary solution known, Equations (4) for F and ¢ are linear.
We impose the boundary conditions
F@©0) = 0, GO0)=0 (6)

here. This system and 1ts solution will be termed secondary. The pressure
distribution corresponding to a solution of these systems of equations is

p = pu — YapV2a( /(1 —ao)2® + V(1 +ao)y* — Mz — Ny + HY) (7)

We turn now to the detalls of tho solutions. It 1s convenlent to consider
various possible cases separately.

Axisymmetric case qo =0 . The general primary solution
is glven by
v =kH, H = k-Yinwhz + Hyk-*(comkz — 1) ®)
where k = q’(0) . It is analytic. The general secondary solution is
F = fy VH exp (— Y4k2), G = g V' H exp (Yyk2) )

where f, and g, are arbitrary constants., Thus the secondary velocity
behaves as 2z near the wall, and the vorticity ‘as z-é. The stagnation
streamline near the stagnation point has the shape described by

.Y i (10)

Nodal case 0<q, <1 . In this case the primary streamlines
on the wall form & nodal pattern. The only analytic primary solution is the
speclal one § =2 , a =a, . The general primary solution has the form
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H' =1 4 hyzl-% + hyz1+% 4 ¢ (z20-30) (11)
@ = g — hyzl=% + hyzl4% 4 o (z2(1-a0)

where h, and h, are arbitrary constants. The corresponding secondary solu-
tion has the form

F = joz‘/.(l—aa) 1 +o (z(l-ao))], G = goz‘/z(l+ao) 14+ o0 (z(l-an))] (12)
The stagnation streamline near the stagnation polnt 1s described by

s gYii-a0)

T hT20—w)’

z‘/z(l'*“n)

2T (13)

Y
8o
This result reduces to (10) if ao is set equal to zero.

Planar Case q,=1. In this speclal case we require that
a = §#'. We obtain for the primary solution

H = k-'sinn kz, a = H' = comkz (14)

where k% 1is arbitrary. In this case ¥ cannot be set equal to zero in
general. The secondary solution is

inh k
F=Mh e+ fo (15)
G = goH (16)

Unless both ¥ and p, are zerd no stagnatlion point can exist. Provided
¥ =0 and f,= 0, the stagnation streamlines near the stagnation points
are described by
z = const, Y = Y,8,2 @7

Here the streamlines come in to the wall at a finite angle.

Almost-planar case g4 =1. In this case we exclude
the possibility that g = ¥’ . A new variable g 1s defined by

z =
E=In— for z=1ze" (18)
where &z, 1s an arbitrary constant. The primary solution has the form

H=z+2'(1+0o(E"'Inf)
Y, (H —a) =&1(1 + o (&' §)) (19)
Yy (H' +a) = 1 + k2?8 (1 + 0 (5" In §))

where % 1s an arbitrary constant,

The secondary solution has the form
F=—1Y,ME(1+o0@E'Ing) + Yofo (H —a) (20)
G=g,28(1 +0(E"'InE) (21)
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As in the planar case, N must be equal to zero in order that a stagna-
tion point may exist. This means there can be no pressure gradient along the
x-axis. If f, # 0 a translation of the origin in the x direction can be
found which will make f, = O . Thus we may set , = O without loss of
generality.

If =0 and f, = O, a stagnation streamline enters the origin, wilth
1tvs shape described by x = O and

Y =— Y48z (§ + Y5) (22)
In this case, as in the planar case, not only 1s the origin a stagnatlon
point but also all polnts along the x-axis. However, these other stagnation
points have the somewhat unusual property that there exlsts no stagnation
streamline entering any of them.

Saddle=-point case qa >1. In this case the primary
streamlines on the wall form a saddle-point pattern. The primary solution
(11) of the nodal case applies here except that we must set he =0 .

We obtaln
H —1 = a — gy = hyzt*a - o (z21+22) (23)

with only one arbitrary constant. The secondary solution has the form
F —— foz‘/s(l““o) [1 + 0 (zl*“ln)]’ G = gozl/!(l"'ao) [1 + 0 (zl"'ao)] (24)

In thls case 1t is necessary that f, = 0 1n order that a stagnation
point may exist. If ¢, = O the stagnation streamline is described by x =0
and the second equation of (13).

In summary, stagnation points of asisymmetric and nodal types (with

0 < qq< 1) can exist in quite great generality. A small perturbation in the
pressure field or incoming vorticity distribution will only slightly perturd
the stagnatlon point location and low field. Stagnation points of the types
with q, » 1 can exist only under speclal conditlions. A perturbation of the
pressure field making ¥ nonzero will destroy the stagnation point in the
cases q, = 1 , as will a small superposed uniform velocity in the x direc-
tion in the planar case. In the saddle-point case, any incoming vorticity
with nonzero y component will destroy the stagnation point.

In the saddle-point case (with g, = O) and with a,g 1 if f,=0 and
go= O , the stagnation streamline comes in to the stagnation polint normal to
the wall., In the planar case with g,# O 1t comes in at a finite angle.

In all the other cases considered the stagnation streamline comes in to the
stagnation point tangent to the wall. This may be considered to be the situ-
ation in general in inviscid rotational flow.



